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Accelerator mode in a gravitational bouncer as an attracting
mode in a globally chaotic Hamiltonian system
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An accelerator mode in a gravitational bouncer is studied. It is shown that this mode plays the role of a sink
that eventually sucks out all of the diffusive component of the motion. In order to quantitatively describe this
feature, a Fokker-Planck equation for the density of the probability distribution of the diffusive mode is
analytically transformed into a system of coupled Volterra-type integral equations that are subsequently nu-
merically solved. A formula for the probability distributioRacc in the accelerator mode is also given.
Numerical simulations reveal very satisfactory agreement with the proposed formulas.
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I. INTRODUCTION accelerator-mode island, the enhancement of diffusion was
observed. It is due to the intermittent transition of particles

It is well known that when the dynamics of a nonlinear from the chaotic orbits to the unstable accelerator orbits, i.e.,
Hamiltonian system can be described in a two-dimensionalrajectories lying close to the accelerator islands. These tra-
phase space the chaotic part of the evolution is ruled by gectories will follow the stable accelerator orbits for many
Fokker-Planck equation for the distribution of one of the twomapping periods and this effect is sometimes called “the
variables. This variable is customarily taken to be the actiorstickiness” of islandg5].
| (or energy and it is assumed that the other variatdagle More general mappings in whick is p dependent may
randomizes much more rapidly. not have stable accelerator modes. Even in this case, how-

Two-dimensional mappings were the most frequentlyever, the enhancement of diffusion is expected because of the
studied models of such systeifis this case action and angle presence of the so-called latent accelerator modes or quasi-
are often replaced by momentumand phaseand the cen- accelerator mode$6,7]. In some channels of the phase
tral problem was connected to the determination of the difspace, acceleration fropy to p; may occur if in the stan-
fusion coefficientD(p). For the double periodic standard dard map the birth aK(py) and the death & (p,) of the
map the diffusion coefficient was calculated, taking into ac-accelerator mode respectively take place. Streaming over the
count long-time correlation effects, i.e., going beyond themode was described [7] by adding sources and sinks to the
quasilinear approximation, which assumes phase randomiz&okker-Planck equation. This procedure would not be neces-
tion on each mapping iteratidii,2]. It was shown that this sary if the integration time was long enough to include the
result may be applied to more generic maps, e.g., the Ferngintire period of streaming. In the type of maps considered
map, for which the standard map may be considered as there was also no net escape of probability from the diffusive
local approximatiorf7]. mode.

It soon became clear that the influence of a class of im- Adding noise to the standard map ensures that every tra-
portant phenomena that are present in a standard map wgsttory visits the stable accelerator modes for some time and
still missing in such a description of diffusion. These phe-modification of the diffusion takes place too. The depen-
nomena, called accelerator modes, were introduced by Chidence of this effect on the stochasticity parameter was inves-
ikov [3]. In brief, in the chaotic sea of the phase space, therégated in[6].
are islands of such regular motions for which the central The escape of the probability from the accelerator mode
trajectory has a constant phase while momenguimcreases was proposed if8]. In this paper the quantization of the
monotonically in timewithin such an island phases perform kicked-rotator Hamiltonian, which corresponds to the stan-
a stable oscillation around the central fixed valukcceler-  dard map, was performed and the effect of the tunneling
ated motions of this type, called an accelerator mode, arfrom the accelerator mode was taken into account. In par-
classified according to their periodicity and the step size ticular, the dependence of the effect on the magnitude of the
| [4] and each type is stable within some interval of thePlanck constant was investigated.
parameteK characteristic for the standard map. No stochas- The aim of the present paper is to introduce and analyze a
tic trajectory can enter a stable accelerator mode and theghysically well founded model that exhibits a number of
are no trajectories that can leave the mode either. In othdeatures concerning the behavior and coexistence of diffusive
words, the probabilities of finding a particle in the diffusive and accelerator modes. It seems that the most important is
mode or a stable regular mode are time independent, i.e., #te appearance of a type of the accelerator mode that acts as
any instant of time they are the same as they were in tha sink for the diffusive mode and eventually sucks out all of
initial ensemble. However, even in the case when no orbitshe diffusive mode. Since it does happen irrespectively of the
had initial phase-space coordinates lying within a stablénitial conditions, such a tendency for any diffusive motion
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to become a motion within the accelerator mode resembles, Points ¢{,p{) that belong to one of the above solutions
in this respect only, tending towards motions on attractors inepresent the central trajectory in a bundle of neighboring
dissipative systems. The definition of the model will be fol- trajectories describing similar regular motions of the
lowed by the description of its fundamental accelerationbouncer. Numerical simulations reveal that global chaos ap-
mode. Then, the Fokker-Planck equation for the density opears in the CM fore~1. Then, on thet(,p,) plane the

the conditional probability for the diffusive mode will be bundles are viewed as islands of regular motion embedded in
solved exactly. Next, the solution of the equation for thethe sea of chaotic motion. They will be called resonance or
diffusive probability density that includes sinks resulting the “elliptic mode” (EM), the “accelerator mode’(AM),
from the accelerator mode will be presented. The numericaind the “deaccelerator modeg’DAM) for caseqi), (i), and
solution of the Volterra-type coupled integral equation will (jii ), respectively. The chaotic motion will be called the “dif-
be used for the description of the sinks efficiency. Formulagusive mode” (DM).

for the probability density to find the trajectories in the ac- The CM is not the area-preserving map. In fact,

celerator mode are simultaneously derived and in this case

the diffusion mode will be treated as a source. The formalisn®l Py 10,41

ensures the conservation of the sum of probabilities to find a ) .

trajectory in the diffusive or the accelerator mode. A com- =|[pr—el (t)/12)/[Pns1—el (th+1)/2]|dpadt,. (3)
parison with numerical simulation will demonstrate that the ] ] . ]

theoretical description of the model proposed is generall)pn central trajectories, the above Jacobi determinant equals

correct. 1 for the EM, is smaller than 1 for the AM, and is greater
than 1 for the DAM.
Il. MODEL It can be seen from Eq$2) that for sufficiently large

values of p,, the term e|[I(t ;1) —1(tn) 1/ (ths1—to)|<<1.

We are considering here the one-dimensional gravitawithout this term the CM becomes very similar to the fa-
tional bouncer, i.e., a point mass in the potentialU(x): mous standard map in its particular form, which is called a
U(x)=mgx for x>¢l(t) and U(x)=« for x<el(t). The piecewise linear standard m@p2]. This approximate form
functionI(t) is a real-valued periodic functiofwith period of the CM will be further denoted as ACM. The ACM pre-
1) of the dimensionless time parameteand ¢ is a real serves area for each poirtt,(p,,), has the same three regular
positive parameter. An extensive bibliography on this modekolutions as the CMfor m and N>1), and the stability
may be found in9]. It will be assumed hereafter thh(t) conditions are formally also the same. Let us stress at this

has the form point that apart from this asymptotic region, the CM cannot
be locally approximated by a standard type of map even with
[ h({t})/4g for £={t}=0 ;) ¢ depending omp,. Such an approximation proved to be
B [,({t})/4g for 1={t}=¢, @ very useful in the case of the Fermi mgfl.

Further studies will be performed on another, more con-
where [ (t)=—t(t—&)/¢&, 1L,(t)=({t—-&)(t—-1)/(1-¢), venient, form of the map that describes the dynamics of the
{t}=t mod1,¢ is a real parameter, and=1£=0. The above bouncer in its phase space. The map, which will be called the
choice ofl(t) is not essential for investigations presented in“stroboscopic map” (SM), gives the values of positior
the present paper; similar effects may be obtained for othesind momentunmy at consecutive integer instants of time
forms ofl(t), e.g.,I(t) =sin(2x#t). Assuming the collisions at =k, k=1,2,....
x=1(t) to be elastic, settingh= 1, and introducing the vari- Relations betweenp, ,t,) from the CM and %,v) from
able p=2v/g (v is the point velocity, the dynamics of the the SM, taken at time-, have the form
bouncing ball is given by the map

X= _(9/2)(T_tn)2+gpn(7'_tn)/2+I(tn)a

Pnr1=Pntel (thin)—ell(the) =1tV (ths1—ty),

v=—0(7—ty) +gpy/2. (4)
t =t +p,—e[l(t —1(t,)]/2(t —t,), 2 . . .
ne1 =t ¥ Po=ell () “1 () )2t~ ), (2) The point @,,,t,,) generated =int(p,;) points (x,v) whose
wheret, is the time of thenth collision, p, is the scaled Values are obtained when=1,2,... ,M is substituted into
momentum just after theth collision, andi denotes the E9: (4
derivative ofl with respect tot. The map given in Eq(2) Note that
will be called the “collision map”(CM). .
i dodx = (g/27[py— el (t)/2][dpdty  (5)

Three linearly stable regular solutions of the CM can be

easily found: (i) the periodic resonance solution and observe that the Jacobi determinanti;jddependent.

(e) _ (e) _ ; _ () _+(e)—

th'=¢&/2, py’=m with m=12,..., (t;Z,—t;’=m), Equationg3) and(5) confirm the area-preserving property of
which is stable for 6e<2¢; (i) the accelerator e gu.

solution  t{®=&(1-1/e)/2, Pga):’_\lﬂ_]’ n=012,..., In Fig. 1 a segment of the phase space of the SM is
N=12,..., (t@,—t®=N+n), which is stable for e presented. Three regular solutions are clearly visible. Large

<2¢ provided ¢=0.5; and (i) the deaccelerator elliptic areas represent islands of the EM. Families of islands
solution  t{M=¢(1+1/)/2, p{’=N-n, n=0,1,...N that correspond tp/®=1, 2, and 3 are visible. The bright-
—1,N=23,..., t@,—t@n=N-n), in which the condi- est areas represent islands of the AM, while the darkest ones
tions for linear stability are the same as those for dége depict islands of the DAM.
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FIG. 1. Fragment of the phase space of the
bouncer obtained by iterations of the stroboscopic
map. Large elliptic regions represent islands of
the EM, the brightest regions depict islands of the
AM, and the darkest regions depict islands of the
DAM (g=1.0, £=0.75, ands =1.25).

For reasons that will become clear later, it is essential tdively. An iteration step in the SM takes place in a unit of
know the dependence anof the areas of the regular modes time. Therefore the rate of increaB® of the J(&°?, i.e.,
of the SM. Numerical simulationgsee Sec. Yreveal that the increase in time of areas of islands given in Fig. 2, is
areas of the AM islands grow linearly with Since the SM  equal to
preserves area this means that whemrows, trajectories
from the DM are captured by these islands. Meanwhile, areas RI&0 = (J(a9 — 3(@cd) /N = S(ac9/N, (6)
of the DAM islands linearly decrease with which means in
turn that some trajectories are escaping from the DAM to thé.€., the rate decreases with increasing he formula for the
DM. To be exact, there is the third process that also takegate of decrease of the deaccelerator islands can be written in
place. It is the passing of trajectories from the DAM directly @ similar way.
to the AM. Simple calculations show that the central trajec- To conclude this section we stress that the effects of ex-
tory from the DAM does not become the central trajectory inchanging trajectories between diffusive mode and some
the AM. The numerical iterations reveal, however, that thergegular modegAM and DAM) cannot be observed for the
exists a fiber of trajectories surrounding the central trajectorgase of approximated maps and therefore it is a different

in the DAM that is captured by the AM. feature in comparison to the standard map.
The same effects of exchange of trajectories between
modes is visible also in numerical treatments of the CM. Let Ill. DIFFUSION EQUATION

us note that in the CM a trajectory changes modefs=dt, ) , o . i
and remains in the same mode between collisions. This time, W& Wil use notions of probability densities to find a tra-
however, areas of all three types of islands are practicallfectory in @ given mode. It follows from what was said above

constant. This result is consistent with the previously noted

dependence on of islands in the SM. In fact, the following 0.09 : . : : : : :
relations may be established for areds of regular 7
modes: For themth EM, J®=[dv dx=(g/2)*f|p, 008 ¢
— el (t,)/2|dp,dt,=(9/2)’mS®. HereS® is the area of the 007 1 e
elliptic mode in the CM and the vanishing of the integral of 0.06 ,‘
| over an elliptic island is assumed. In the same way one 5z o005} 4//
obtains the areas for the accelerator and deaccelerator mode§_’= 0.04 1 *
that start from an island with po=N:J{&9=(g/ '
2)2(N+n)S@ and J{¢eC (g/2)(N—n)S(@eae)  with 0
Slaco)=gldeace) the areas of appropriate islands in the CM. 0.02 | "
The numerically tested independence $f, S(°) and 001 |
sl@eaco)on p is assumed here. _ . . , , , ,
A family of m elliptic islands has the total area propor- % 2 4 6 8 10 2 14 16
tional to m?. Consecutive islands in the AM grow linearly n
with n, while those in the DAM linearly decrease. In Fig. 2
the dependence df™* onn is given for islands in the SM FIG. 2. Dependence of the numerically computed a#¥8 of

that correspond te=1. In the AM or DAM of the CM,n islands in the accelerator mode on values of the scaled momentum
iteration steps that start wiftl,=N correspond in the SM to p,=n. The straight line represents the least-mean-squares fit. The
(2N+n—1)n/2 or (2N—n+1)n/2 iterations steps, respec- adopted parameters values are 1.0, £=0.75, ande =1.25.
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that there is a flow of probability from the DM to the AM as whereK (2= (3(@°9)— y(aceh ;| @ @)y (@1 gre the val-

well as from the DAM to the DM. Therefore, the DAM acts ues ofl that Correspond ttlga) and pga) , i.e., to the center of

as a source for the DM, while the AM appears as a sink tqhe AM; « is a dimensionless phenomenological parameter.
the DM. The simplest way in which it can be seen how,(@):g gre calculated using the relations between the energy
trajectories exchange modes is to run the map forward ang}]d the action introduced abov&(®®® is equal to this

n

e s o AMOUNL o he phase Space capured by he A fiands i a
P ' nit of time, which corresponds to the unit growth of the

tively enlarging compact islands. When iterated backward (acc) : 0
the island disperses in the sea of chaotic motions. An islangcuon' For largen, Ky™* behaves like If-. In terms de-

in the DAM is characterized by an exactly opposite behavior.s'cribing the sink, the diffusion probability density is approxi-

Such an interplay between modes will eventually result in.mated by the&-type distributions Iocated.ats correspond-
the “sucking out” by the AM of all of the probability from ing to centers of islands. The full equation for tRg now
outside the elliptic islands, i.e., probabilities from the DM has the form
and the DAM. Thus the AM in the bouncer has the property
that is entirely different from the sticking and latent proper-
ties of accelerator modes in other maps. . 0
The chaotic component of the bouncer dynamics, i.e., thJen grder to solve Eq(9), ‘(*(};"‘ so(l)utlonPg i ’loo’t) ,Of Eq.(7),
DM, will now be described as diffusion of the actionThe ~ Which has the properti?p(1,17,0)= (1 —17), will now be
diffusion coefficient can be simply derived when one as-9'Ven- 0 10
sumes that in the CM the variabig randomizes much more ~ The double Laplace transform &5(1,1°,t), namely,
rapidly thanp,,. Recalling the relation between the energy
E and the action | for the bouncer with f(s.q IO):_FJOOP (1,1°,t)expl — st—ql)dt d
I(t)=0:2E=(37gl/2)%3 one gets, from the ACM, an in- o 0oJo PV ’
crease of the action due to a collision with a moving plate:
(A1)2=16/m2g?(3mg1/2)*i (t)2. The time elapsed between IS asily found and has the form
the collisions is equal toAt=(2/g)(3mgl/2)*®. Since
(12y=[312(t)dt=£2g?/48, the diffusion coefficientD(l) f(s,q’|0):(1/qe25/DOq)fq]_/q’e*[ZS/(Doq’)Jrq"O]dq’_
=((Al)2)/At=Dyl, with Dy=e?g?/16m7. 0
Let Pp(I,t) be the density of the probability distribution (10)
of | at timet. We assume that the evolution Bf is gov-
erned by the Fokker-Planck equation. If the normPRgf is
constant, i.e., if there is no exchange of probabilities betwee
different modes, the following diffusion equation will be sat-
isfied by Pp(I,t):

Fortunately enough, not going beyond the standard tables of
haplace transforms, the inverse transform can be found and it
reads

PO1,19t)=(2/Dgt)exd —2(1 +1°)/Dyt]
3Pp=(1/2)3,(D(1)9,Pp). 0 X1o(A(119)Y4Dot), (1)

where |, is the modified Bessel function of the first kind.
PO(1,19t) is normalized to unity for all times.

With the help of the functio®, Eq. (9) may be trans-
formed to the integral form

This is a well-known Landau form of the Fokker-Planck
equation for a Hamiltonian systefi0] (see alsd11]). The
norm of Pp changes due to the flow of probability from the
DM to the AM: a sinklike term in Eq(7) should take care of
this effect. The norm changes also because of the flow of ‘
probability from the DAM to the DM: a sourcelike term shall p(1,1°,t)= p|(3°>(| 10,1 — az Kgacoj p§30>(| ,|§1a> t—t')
then be added to Edq7). Initial distributionsP at t=0, n=1 0
which will be used later, will be of thé(I —1°) form. To be
more specific, all points in an initial gnsrza/gnble will belong
to the same energy shellE2=(3#7gl*/2)" and (ii) be lo- _ . .
cated in chaotic parts of the shell. This class of initial distri-'f =15 ,» m=12,....L, is substituted into Eq(12) and
bution leaves only the dominant and most interesting flow of€ Sum is limited tol terms, then we obtain a system of
probability, namely, DM— AM. No source term is then L couapleg Volterra-type integral equanons for Fhe functlpns
necessary in Ed7). If initially there was some probability in PD(lg ) 1), n=1.2,....L. For comparison with numeri-
the DAM, then in practice it would flow away from the cal simulations, these equations were solvedferl2. The
DAM after a few iterations. Moreover, filling up of the AM set of functionsPp(1%9,1°,t), n=1,2,... L, calculated in
will not be masked by an initial population of this acceleratorthis way will suffice to determin®;, from Eq. (12) as well
mode. asPacc from Egs.(13) and(14) (see below.

The sink term is assumed to be in the form

X Po(1@,19,t")dt". (12

IV. PROBABILITY IN THE ACCELERATOR MODE

S(It)y=— > aK@Op (1@ t)5(1—1@), (8) The density of the probability distribution in the AM is
n=1 consequently written in the form
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0.012 T T T T T T T T v
Pacc(l )= 2 PRI 08011 (13 1200 -
t 0.01 F t=2000 -

Fort>0 the flow of probability from the DM starts to popu-
late each component of tHe,cc(l,t). It is not particularly 0.008
complicated to write down the formula fa?{R-(1® 1). It

reads W 0006 -
t 0.004 [
PREc(Ii ) =ak {3 f Po(1f 19t
—n]
0.002
nt u(n,j)
+> aK}aC‘?f R URNEADLI N . ;
j=1 d(n,j) 50 100 150 200 250 300 350 400 450 500

(14 .

whered(n,j)=[t—=[_;i] andu(n,j)=[t—=] i ]. Square

brackets used in the limits of the integrals have the meanin FIG, 3. Comparison of the diffusion probability density
0 10 ; i i
0=+ 1)/2. QD(I,I ,t) from Eg. (11), with numerical resultghistograms for

) ] t=100, 500, and 2000. The values of the parameters are
For all values ofl ga) and at any instant of time the prob- g=1.0, ¢=05, £=2,0, 1°=19.12, D,=0.0812.

ability from the DM is leaking to the AM. Once in the mode,

the probability TIOWS. according to the dyn_amlcs Chara}g)tensaepend ork and that accelerator islands had a compact form.

tic to the AM, i.e., it stays fom units of time on thel

In this way the dependence given in Fig. 2 was obtained.
shell. The formulg14) properly takes care of both features. Let us now examine formulas for the probability densities
The integration of thd5cc(l,t) overl gives the norm

in the DM and AM. According to what was said above, we

o choose the initial density in the phase space in such a way
f Pacc(l,H)di= 2, PRI 1). that only points that belong to chaotic regions of the same

0 n=1 energy shell are taken into account. In the first place it re-
guires the localization and finding measures of the elliptic,
accelerator, and deaccelerator regions of the considered en-
ergy shell. This means, in practice, finding arcs of the pa-
rabola E=v?/2+gx, which belong to the EM, AM, and

After the rearrangement of the double sums in the abov
equation, it can be written as

o t
f Pacc(l,D)dI=a 2, Kﬁawf Po(1?,10,t")dt". (15  DAM islands. The uniform density of points is then assumed
0 n=1 0 on the remaining portions of the parabola and these are the
From Egs.(12) and(15) it follows that points that start to evolve in time. Depending on the param-

eterse and¢, the phase-space density of these points is now
o 0 to be compared either witR3 from Eq.(11) or with P, and
fo [Po(117,t) + Pacc(l 1) JdI=1, Pacc given in Eqs.(12) and (13).
The first choice of parameters is such that only the DM
i_e" the sum of probab”ities in the DM and AM is proper'y eXiStS. The beSt f|t W|th the reSUItS Of numerical Simu|ati0ns

normalized for all instants of time.

0.7

V. COMPARISON WITH NUMERICAL SIMULATIONS

The simplest way to obtain numerically the time evolution
of an ensemble of trajectories of the gravitational bouncer is
to solve equations of motion in the moving frame of refer-
ence, i.e., to change the variable—y=x—I(t). Then
y>0 andy— —vy for y=0. Values ofx andv for all trajec-
tories from an ensemble were readily obtained for integer
instants of time and the time dependence of island areas and
of densities of points in the phase space were calculated.

In order to obtain the are#?*® of the accelerator island
in the phase space, a rectangular region was centered at the
point (x{& ,v®), i.e., the point that is calculated from Eq.

(4) for t,=t®, p=n, and r=1. From this region, a |

500x 500 grid of points then evolved in time. The nhumber of

points that, after (B+k—1)k/2 units of time, had FIG. 4. Histogram of the probability density for
v~g(n+k)/2 gave the desired value 8f° (in units of the  g=1.0, ¢=0.75, e=1.25, 1°=0.61, andt=20. The accelerator
adopted grigl It was found that folk>1 the result did not mode exists for these parameters.
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0.7 T T T T T T T 0.7
06 | 1 06 |
0.5 - b 05 +
04
& !
03 f
10 15 20 25 30 35 40 20 25 30 35 40
| [
FIG. 5. Diffusion probability densitPp(1,1°,t) from Eq. (12) FIG. 7. Same as in Fig. 5, far="50.

(solid line), diffusion probability density?(1,1°,t) from Eq. (11) _ o
(dotted ling, and sumPp(1,1°,t)+ Pacc(l.t), With Pacc from Eq. &€ simultaneously presented in Figs. 5, 7, and 9. The AM
(13) being the density of the probability distribution in the AM. iSlands have some width that grows with growing(see

Do=0.07 anda = 1.0. The remaining parameters and the timge ~ Fi9S. 4, 6, and B This effect cannot be described by the
the same as in Fig. 4. model presented in this paper sindaype densities of the

AM are assumed in Eq13). Nevertheless, in order to make
of the formula given in Eq.(11) was obtained for qualitative comparisons of populations of the different AM
Dy=0.0812 and the comparison for several instants of tim(al"cfl"’mdS possw_)le,_ an arbitrary constant widil was as-
is given in Fig. 3. The rough theoretical estimation signed. The distributio xcc appears then as a sequence of
which was presented above, gag,=0.0796 for th7e “C(E;mn(g)ys,” each with a helght proportional - to
adopted values of parameters. Since both valués,differ PACS.(I Fbt?[ see Eg.'(“)é T7h € c?rgneys are added to the
less than 2%, the agreement of the theory and numericzflD Istributions in Figs. 5, £, and . . N
results is quite satisfactory. Contributions from the AM to histograms given in Figs.
Figures 4—9 present cases when the AM exists. NumericaAI‘ 6, and 8 can be numgrlca}lly evaluated at_ least f.or' such
simulations(Figs. 4, 6, and Bare now compared with results values ofn where the diffusion component is negligible.
obtained from Eqs,(1’2) and (13) (Figs. 5, 7, and P The This has been done for the histogram in Fig. 8. In Table | the
comparison is made fdr=20, 50 andllo'O In comparison probabilities located in the AM islands in Fig. 8 are com-
Lo O ; i ilities P (] @ =
with the previous case, the existence of elliptic and acceler2@€d With probabilities Picc(l5”,t) for t=100 and
tor islands modifies the value of the diffusion constet 11=n=<15. It follows from the theory that after 100 units of

This time the best fit was obtained o, =0.07. The param- time the sum of probabilities in all islands of the accelerator

eter « was also determined from the adjustment to the nu/Mode is equal to 0.294. _ .
merical data and it turned out to le=1.0. The agreement of simulations and derived formulas is cer-

In order to better visualize the escape of probability fromt@inly not as good as that in Fig. 3. From a long list of more
the DM, the densitie®,, (solid lines andP? (dotted lines " less obvious causes of such a state of affairs let us mention
' b D only one. These AM islands, which are mostly to the right,

0.7 T T T T T T T 0.7

0.6 R 06

05 b 05

04

Pp

03

02

01 r n=11 12 13 14 15

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
| |

FIG. 6. Histogram of the probability density. The parameters FIG. 8. Histogram of the probability density. The parameters
g, &, ande are the same as in Fig. #=50. g, &, ande are the same as in Fig. #=100.
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0.7 . . . . i i . TABLE |. Probabilities located in islands of the accelerator
mode att=100. The values of the parameters are the same as in
06| . Fig. 4. P{Q probabilities calculated from Eq14); P4, prob-
abilities evaluated from the histogram in Fig. 8.
05
04l n Pigc Pide
< 11 0.020 0.020
081 12 0.027 0.028
02k i 13 0.039 0.041
14 0.057 0.062
B B 15 0.041 0.033

that eventually only periodic and accelerated trajectories re-
mained. This is the different property of accelerator modes.
The above-mentioned features were quantitatively described.
FIG. 9. Same as in Fig. 4, far=100. The exact solution of the Landau-type diffusion equation for
the conditional probability density of the actidnin which
were populated during initial instants of time, i.e., within the the diffusion coefficient depends |inear|y on |, was given_
time interval when not yet enough collisions had taken placerhe sinklike term, responsible for the presence of the accel-
and the description in terms of diffusion was questionable. erator mode, was then added to the diffusion equation. The
solution of the full equation for the diffusive probability den-
VI. SUMMARY AND CONCLUDING REMARKS sity was obtained via the transformation of the differential
. . . equation into a set of coupled Volterra-type integral equa-
We studied conditions for the existence of the acceleratofions The latter was solved numerically. The density of the
mode in the model of a gravitational bouncer, i.e., a pointyohapility in the accelerator mode was found in such a way
that bo.uncgs elas.tlcally on an 'oscnlatmg plate. A paraboliGhat the norm of the sum of both probabilities was time in-
approximation, with parametrically (0§<1) regulated gependent. Fairly good agreement of analytical and numeri-

contributions of convex and concave parts, was used t0 dgs)| results with “computer experiments” was finally demon-
scribe the oscillations. It was well known that for the appro-g¢ated.

priate range of parameters in the phase space of this model \yhen oscillations of the reflecting plate are described by
there were regions of resonance, periodic motions, that wergnqther periodic function of time the attracting modes with
embedded in the sea of the chaotic motion. We have showgmjlar properties also exist in gravitational bouncers. A

that when the resonance islands existed gnd).5, there g antized version of the problems discussed in this paper,
were also two regular types of motions: the accelerator angc|uding in particular the effect of tunneling from the accel-
the deaccelerator modes. It was also known that acceleratgfated mode, will be the subject of a subsequent paper.

modes enhanced the diffusion in the chaotic part of the phase | ¢t ys conclude with the following remark. It seems that

space. Latent or quasiaccelerator modes, as well as stick)e properties of the accelerator mode, which we described
accelerator modes, were introduced in a number of modelgyove, are closer to Fermi's expectations of acceleration of
On a sufficiently long time scale, these modes did not changgosmic particles than those features that follow from the

the norm of the probability density in the diffusive mode. podel that bears his name in which there is an upper bound
This is not the case in the model considered in this papefor the increase of energy.

Examining maps, which describe the time evolution of the
bouncer, it has been demonstrated that the probability lo-
cated in the accelerator mode monotonically increased in
time. In other words, the accelerator mode attractedtked This work has been partly supported by the Polish Gov-
out) the probability from the diffusive mode with the result ernment(KBN Grant No. 2P302 100 Q7

ACKNOWLEDGMENT

[1] A. B. Rechester, M. N. Rosenbluth, and R. B. White, Phys. [7] A. J. Lichtenberg, M. A. Lieberman, and N. W. Murray,

Rev. Lett.44, 1586(1980. Physica D28, 371(1987.
[2] A. B. Rechester, M. N. Rosenbluth, and R. B. White, Phys. [8] J. D. Hanson, E. Ott, and T. M. Antonsen, Jr., Phys. Re29A
Rev. A 23, 2664(1981). 819(19849.
[3] B. V. Chirikov, Phys. Rep52, 263(1979. [9] S. T. Dembiski, A. J. Makowski, and P. Peplowski, Phys.
[4] Y. H. Ichikawa, T. Kamimura, and T. Hatori, Physica 29, Rev. Lett.163 143(1992.
247 (1987). [10] L. Landau, Zh. Eksp. Teor. FiZ, 203 (1937.
[5] C. F. F. Karney, Physica B, 360(1983. [11] A. J. Lichtenberg and M. A. LiebermanRegular and Chaotic

[6] C. F. F. Karney, A. B. Rechester, and R. B. White, Physica D Dynamics(Springer, New York, 1992
4, 425(1982. [12] S. Bullet, Commun. Math. Phy4.07, 241(1986.



