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Accelerator mode in a gravitational bouncer as an attracting
mode in a globally chaotic Hamiltonian system

S. T. Dembin´ski and P. Pepłowski
Institute of Physics, Nicholas Copernicus University, ulica Grudzia¸dzka 5, 87-100 Torun´, Poland

~Received 27 June 1996!

An accelerator mode in a gravitational bouncer is studied. It is shown that this mode plays the role of a sink
that eventually sucks out all of the diffusive component of the motion. In order to quantitatively describe this
feature, a Fokker-Planck equation for the densityPD of the probability distribution of the diffusive mode is
analytically transformed into a system of coupled Volterra-type integral equations that are subsequently nu-
merically solved. A formula for the probability distributionPACC in the accelerator mode is also given.
Numerical simulations reveal very satisfactory agreement with the proposed formulas.
@S1063-651X~97!06801-3#

PACS number~s!: 05.45.1b, 03.20.1i
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I. INTRODUCTION

It is well known that when the dynamics of a nonline
Hamiltonian system can be described in a two-dimensio
phase space the chaotic part of the evolution is ruled b
Fokker-Planck equation for the distribution of one of the tw
variables. This variable is customarily taken to be the act
I ~or energy! and it is assumed that the other variable~angle!
randomizes much more rapidly.

Two-dimensional mappings were the most frequen
studied models of such systems~in this case action and angl
are often replaced by momentump and phase! and the cen-
tral problem was connected to the determination of the
fusion coefficientD(p). For the double periodic standar
map the diffusion coefficient was calculated, taking into a
count long-time correlation effects, i.e., going beyond
quasilinear approximation, which assumes phase random
tion on each mapping iteration@1,2#. It was shown that this
result may be applied to more generic maps, e.g., the Fe
map, for which the standard map may be considered a
local approximation@7#.

It soon became clear that the influence of a class of
portant phenomena that are present in a standard map
still missing in such a description of diffusion. These ph
nomena, called accelerator modes, were introduced by C
ikov @3#. In brief, in the chaotic sea of the phase space, th
are islands of such regular motions for which the cen
trajectory has a constant phase while momentump increases
monotonically in time~within such an island phases perfor
a stable oscillation around the central fixed value!. Acceler-
ated motions of this type, called an accelerator mode,
classified according to their periodicityp and the step size
l @4# and each type is stable within some interval of t
parameterK characteristic for the standard map. No stoch
tic trajectory can enter a stable accelerator mode and t
are no trajectories that can leave the mode either. In o
words, the probabilities of finding a particle in the diffusiv
mode or a stable regular mode are time independent, i.e
any instant of time they are the same as they were in
initial ensemble. However, even in the case when no or
had initial phase-space coordinates lying within a sta
551063-651X/97/55~1!/212~7!/$10.00
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accelerator-mode island, the enhancement of diffusion
observed. It is due to the intermittent transition of partic
from the chaotic orbits to the unstable accelerator orbits,
trajectories lying close to the accelerator islands. These
jectories will follow the stable accelerator orbits for man
mapping periods and this effect is sometimes called ‘‘
stickiness’’ of islands@5#.

More general mappings in whichK is p dependent may
not have stable accelerator modes. Even in this case, h
ever, the enhancement of diffusion is expected because o
presence of the so-called latent accelerator modes or qu
accelerator modes@6,7#. In some channels of the phas
space, acceleration fromp0 to p1 may occur if in the stan-
dard map the birth atK(p0) and the death atK(p1) of the
accelerator mode respectively take place. Streaming ove
mode was described in@7# by adding sources and sinks to th
Fokker-Planck equation. This procedure would not be nec
sary if the integration time was long enough to include t
entire period of streaming. In the type of maps conside
there was also no net escape of probability from the diffus
mode.

Adding noise to the standard map ensures that every
jectory visits the stable accelerator modes for some time
modification of the diffusion takes place too. The depe
dence of this effect on the stochasticity parameter was inv
tigated in@6#.

The escape of the probability from the accelerator mo
was proposed in@8#. In this paper the quantization of th
kicked-rotator Hamiltonian, which corresponds to the sta
dard map, was performed and the effect of the tunnel
from the accelerator mode was taken into account. In p
ticular, the dependence of the effect on the magnitude of
Planck constant was investigated.

The aim of the present paper is to introduce and analyz
physically well founded model that exhibits a number
features concerning the behavior and coexistence of diffu
and accelerator modes. It seems that the most importa
the appearance of a type of the accelerator mode that ac
a sink for the diffusive mode and eventually sucks out all
the diffusive mode. Since it does happen irrespectively of
initial conditions, such a tendency for any diffusive motio
212 © 1997 The American Physical Society
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55 213ACCELERATOR MODE IN A GRAVITATIONAL BOUNCER . . .
to become a motion within the accelerator mode resemb
in this respect only, tending towards motions on attractor
dissipative systems. The definition of the model will be fo
lowed by the description of its fundamental accelerat
mode. Then, the Fokker-Planck equation for the density
the conditional probability for the diffusive mode will b
solved exactly. Next, the solution of the equation for t
diffusive probability density that includes sinks resultin
from the accelerator mode will be presented. The numer
solution of the Volterra-type coupled integral equation w
be used for the description of the sinks efficiency. Formu
for the probability density to find the trajectories in the a
celerator mode are simultaneously derived and in this c
the diffusion mode will be treated as a source. The formal
ensures the conservation of the sum of probabilities to fin
trajectory in the diffusive or the accelerator mode. A co
parison with numerical simulation will demonstrate that t
theoretical description of the model proposed is gener
correct.

II. MODEL

We are considering here the one-dimensional grav
tional bouncer, i.e., a point massm in the potentialU(x):
U(x)5mgx for x.« l (t) and U(x)5` for x<« l (t). The
function l (t) is a real-valued periodic function~with period
1! of the dimensionless time parametert and « is a real
positive parameter. An extensive bibliography on this mo
may be found in@9#. It will be assumed hereafter thatl (t)
has the form

l ~ t !5H l 1~$t%!/4g for j>$t%>0

l 2~$t%!/4g for 1>$t%>j,
~1!

where l 1(t)52t(t2j)/j, l 2(t)5(t2j)(t21)/(12j),
$t%5t mod1,j is a real parameter, and 1>j>0. The above
choice ofl (t) is not essential for investigations presented
the present paper; similar effects may be obtained for o
forms of l (t), e.g.,l (t)5sin(2pt). Assuming the collisions a
x5 l (t) to be elastic, settingm5 1, and introducing the vari-
ablep52v/g (v is the point velocity!, the dynamics of the
bouncing ball is given by the map

pn115pn1« l̇ ~ tn11!2«@ l ~ tn11!2 l ~ tn!#/~ tn112tn!,

tn115tn1pn2«@ l ~ tn11!2 l ~ tn!#/2~ tn112tn!, ~2!

where tn is the time of thenth collision, pn is the scaled
momentum just after thenth collision, and l̇ denotes the
derivative of l with respect tot. The map given in Eq.~2!
will be called the ‘‘collision map’’~CM!.

Three linearly stable regular solutions of the CM can
easily found: ~i! the periodic resonance solutio
tn
(e)5j/2, pn

(e)5m with m51,2, . . . , (tn11
(e) 2tn

(e)5m),
which is stable for 0<«<2j; ~ii ! the accelerator
solution tn

(a)5j(121/«)/2, pn
(a)5N1n, n50,1,2,. . . ,

N51,2, . . . , (tn11
(a) 2tn

(a)5N1n), which is stable for 1<«
<2j provided j>0.5; and ~iii ! the deaccelerato
solution tn

(d)5j(111/«)/2, pn
(d)5N2n, n50,1, . . . ,N

21, N52,3, . . . , (tn11
(d) 2t (d)n5N2n), in which the condi-

tions for linear stability are the same as those for case~ii !.
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Points (tn
( ) ,pn

( )) that belong to one of the above solution
represent the central trajectory in a bundle of neighbor
trajectories describing similar regular motions of t
bouncer. Numerical simulations reveal that global chaos
pears in the CM for«'1. Then, on the (tn ,pn) plane the
bundles are viewed as islands of regular motion embedde
the sea of chaotic motion. They will be called resonance
the ‘‘elliptic mode’’ ~EM!, the ‘‘accelerator mode’’~AM !,
and the ‘‘deaccelerator mode’’~DAM ! for cases~i!, ~ii !, and
~iii !, respectively. The chaotic motion will be called the ‘‘di
fusive mode’’ ~DM!.

The CM is not the area-preserving map. In fact,

dpn11dtn11

5u@pn2« l̇ ~ tn!/2#/@pn112« l̇ ~ tn11!/2#udpndtn . ~3!

On central trajectories, the above Jacobi determinant eq
1 for the EM, is smaller than 1 for the AM, and is great
than 1 for the DAM.

It can be seen from Eqs.~2! that for sufficiently large
values of pn the term «u@ l (tn11)2 l (tn)#/(tn112tn)u!1.
Without this term the CM becomes very similar to the f
mous standard map in its particular form, which is called
piecewise linear standard map@12#. This approximate form
of the CM will be further denoted as ACM. The ACM pre
serves area for each point (tn ,pn), has the same three regula
solutions as the CM~for m and N@1), and the stability
conditions are formally also the same. Let us stress at
point that apart from this asymptotic region, the CM cann
be locally approximated by a standard type of map even w
« depending onpn . Such an approximation proved to b
very useful in the case of the Fermi map@7#.

Further studies will be performed on another, more co
venient, form of the map that describes the dynamics of
bouncer in its phase space. The map, which will be called
‘‘stroboscopic map’’ ~SM!, gives the values of positionx
and momentumv at consecutive integer instants of tim
t5k, k51,2, . . . .

Relations between (pn ,tn) from the CM and (x,v) from
the SM, taken at timet, have the form

x52~g/2!~t2tn!
21gpn~t2tn!/21 l ~ tn!,

v52g~t2tn!1gpn/2. ~4!

The point (pn ,tn) generatesM5 int(pn) points (x,v) whose
values are obtained whent51,2, . . . ,M is substituted into
Eq. ~4!.

Note that

dvdxut5~g/2!2u@pn2« l̇ ~ tn!/2#udpndtn ~5!

and observe that the Jacobi determinant ist independent.
Equations~3! and~5! confirm the area-preserving property
the SM.

In Fig. 1 a segment of the phase space of the SM
presented. Three regular solutions are clearly visible. La
elliptic areas represent islands of the EM. Families of islan
that correspond topn

(e)51, 2, and 3 are visible. The bright
est areas represent islands of the AM, while the darkest o
depict islands of the DAM.
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FIG. 1. Fragment of the phase space of t
bouncer obtained by iterations of the strobosco
map. Large elliptic regions represent islands
the EM, the brightest regions depict islands of t
AM, and the darkest regions depict islands of t
DAM ( g51.0, j50.75, and«51.25).
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For reasons that will become clear later, it is essentia
know the dependence onn of the areas of the regular mode
of the SM. Numerical simulations~see Sec. V! reveal that
areas of the AM islands grow linearly withn. Since the SM
preserves area this means that whenv grows, trajectories
from the DM are captured by these islands. Meanwhile, ar
of the DAM islands linearly decrease withn, which means in
turn that some trajectories are escaping from the DAM to
DM. To be exact, there is the third process that also ta
place. It is the passing of trajectories from the DAM direc
to the AM. Simple calculations show that the central traje
tory from the DAM does not become the central trajectory
the AM. The numerical iterations reveal, however, that th
exists a fiber of trajectories surrounding the central traject
in the DAM that is captured by the AM.

The same effects of exchange of trajectories betw
modes is visible also in numerical treatments of the CM.
us note that in the CM a trajectory changes modes att5tn
and remains in the same mode between collisions. This t
however, areas of all three types of islands are practic
constant. This result is consistent with the previously no
dependence onn of islands in the SM. In fact, the following
relations may be established for areasJ of regular
modes: For the mth EM, Jm

(e)5*dv dx5(g/2)2* upn
2« l̇ (tn)/2udpndtn.(g/2)2mS(e). HereS(e) is the area of the
elliptic mode in the CM and the vanishing of the integral
l̇ over an elliptic island is assumed. In the same way o
obtains the areas for the accelerator and deaccelerator m
that start from an island with p0.N:JN1n

(acc)5(g/
2)2(N1n)S(acc) and JN1n

(deacc)5(g/2)2(N2n)S(deacc), with
S(acc)5S(deacc) the areas of appropriate islands in the C
The numerically tested independence ofS(e), S(acc), and
S(deacc)on pn is assumed here.

A family of m elliptic islands has the total area propo
tional tom2. Consecutive islands in the AM grow linearl
with n, while those in the DAM linearly decrease. In Fig.
the dependence ofJn

(acc) on n is given for islands in the SM
that correspond tot51. In the AM or DAM of the CM,n
iteration steps that start withp05N correspond in the SM to
(2N1n21)n/2 or (2N2n11)n/2 iterations steps, respec
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tively. An iteration step in the SM takes place in a unit o
time. Therefore the rate of increaseRN

(acc) of the JN
(acc), i.e.,

the increase in time of areas of islands given in Fig. 2,
equal to

RN
~acc!5~JN11

~acc!2JN
~acc!!/N5S~acc!/N, ~6!

i.e., the rate decreases with increasingv. The formula for the
rate of decrease of the deaccelerator islands can be writte
a similar way.

To conclude this section we stress that the effects of
changing trajectories between diffusive mode and so
regular modes~AM and DAM! cannot be observed for the
case of approximated maps and therefore it is a differ
feature in comparison to the standard map.

III. DIFFUSION EQUATION

We will use notions of probability densities to find a tra
jectory in a given mode. It follows from what was said abov

FIG. 2. Dependence of the numerically computed areasJn
(acc) of

islands in the accelerator mode on values of the scaled momen
pn5n. The straight line represents the least-mean-squares fit.
adopted parameters values areg51.0, j50.75, and«51.25.
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55 215ACCELERATOR MODE IN A GRAVITATIONAL BOUNCER . . .
that there is a flow of probability from the DM to the AM a
well as from the DAM to the DM. Therefore, the DAM ac
as a source for the DM, while the AM appears as a sink
the DM. The simplest way in which it can be seen ho
trajectories exchange modes is to run the map forward
backward. Being iterated forward, an island in the AM ma
tains its initial area and a compact form within new, conse
tively enlarging compact islands. When iterated backw
the island disperses in the sea of chaotic motions. An isl
in the DAM is characterized by an exactly opposite behav
Such an interplay between modes will eventually result
the ‘‘sucking out’’ by the AM of all of the probability from
outside the elliptic islands, i.e., probabilities from the D
and the DAM. Thus the AM in the bouncer has the prope
that is entirely different from the sticking and latent prope
ties of accelerator modes in other maps.

The chaotic component of the bouncer dynamics, i.e.,
DM, will now be described as diffusion of the actionI . The
diffusion coefficient can be simply derived when one a
sumes that in the CM the variabletn randomizes much more
rapidly thanpn . Recalling the relation between the ener
E and the action I for the bouncer with
l (t)[0:2E5(3pgI/2)2/3, one gets, from the ACM, an in
crease of the action due to a collision with a moving pla
(DI )2.16/p2g2(3pgI/2)4/3l̇ (t)2. The time elapsed betwee
the collisions is equal toDt5(2/g)(3pgI/2)1/3. Since

^ l̇ 2&[*0
1 l̇ 2(t)dt5«2g2/48, the diffusion coefficientD(I )

5^(DI )2&/Dt5D0I , with D05«2g2/16p.
Let PD(I ,t) be the density of the probability distributio

of I at time t. We assume that the evolution ofPD is gov-
erned by the Fokker-Planck equation. If the norm ofPD is
constant, i.e., if there is no exchange of probabilities betw
different modes, the following diffusion equation will be sa
isfied byPD(I ,t):

] tPD5~1/2!] I~D~ I !] IPD!. ~7!

This is a well-known Landau form of the Fokker-Plan
equation for a Hamiltonian system@10# ~see also@11#!. The
norm ofPD changes due to the flow of probability from th
DM to the AM: a sinklike term in Eq.~7! should take care o
this effect. The norm changes also because of the flow
probability from the DAM to the DM: a sourcelike term sha
then be added to Eq.~7!. Initial distributionsPD at t50,
which will be used later, will be of thed(I2I 0) form. To be
more specific, all points in an initial ensemble will~i! belong
to the same energy shell 2E5(3pgI0/2)2/3 and ~ii ! be lo-
cated in chaotic parts of the shell. This class of initial dis
bution leaves only the dominant and most interesting flow
probability, namely, DM→ AM. No source term is then
necessary in Eq.~7!. If initially there was some probability in
the DAM, then in practice it would flow away from th
DAM after a few iterations. Moreover, filling up of the AM
will not be masked by an initial population of this accelera
mode.

The sink term is assumed to be in the form

S~ I ,t !52 (
n51

aKn
~acc!PD~ I n

~a! ,t !d~ I2I n
~a!!, ~8!
o
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whereKn
(acc)5(Jn11

(acc)2Jn
(acc))/(I n11

(a) 2I n
(a)). I n

(a)’s are the val-
ues ofI that correspond totn

(a) andpn
(a) , i.e., to the center of

the AM; a is a dimensionless phenomenological parame
I n
(a)’s are calculated using the relations between the ene
and the action introduced above.Kn

(acc) is equal to this
amount of the phase space captured by the AM islands
unit of time, which corresponds to the unit growth of th
action. For largen, Kn

(acc) behaves like 1/n2. In terms de-
scribing the sink, the diffusion probability density is approx
mated by thed-type distributions located atI ’s correspond-
ing to centers of islands. The full equation for thePD now
has the form

] tPD5] I@D~ I !/2] IPD#1S~ I ,t !. ~9!

In order to solve Eq.~9!, the solutionPD
(0)(I ,I 0,t) of Eq. ~7!,

which has the propertyPD
(0)(I ,I 0,0)5d(I2I 0), will now be

given.
The double Laplace transform ofPD

(0)(I ,I 0,t), namely,

f ~s,q,I 0!5E
0

`E
0

`

PD~ I ,I 0,t !exp~2st2qI !dt dI,

is easily found and has the form

f ~s,q,I 0!5~1/qe2s/D0q!E
0

q

1/q8e2[2s/~D0q8!1q8I0]dq8.

~10!

Fortunately enough, not going beyond the standard table
Laplace transforms, the inverse transform can be found an
reads

PD
~0!~ I ,I 0,t !5~2/D0t !exp@22~ I1I 0!/D0t#

3I 0„4~ II 0!1/2/D0t…, ~11!

where I 0 is the modified Bessel function of the first kind
PD
(0)(I ,I 0,t) is normalized to unity for all times.
With the help of the functionPD

(0) , Eq. ~9! may be trans-
formed to the integral form

PD~ I ,I 0,t !5PD
~0!~ I ,I 0,t !2a (

n51
Kn

~acc!E
0

t

PD
~0!~ I ,I n

~a! ,t2t8!

3PD~ I n
~a! ,I 0,t8!dt8. ~12!

If I5I m
(a) , m51,2, . . . ,L, is substituted into Eq.~12! and

the sum is limited toL terms, then we obtain a system o
L coupled Volterra-type integral equations for the functio
PD(I n

(a) ,I 0,t), n51,2, . . . ,L. For comparison with numeri-
cal simulations, these equations were solved forL512. The
set of functionsPD(I n

(a) ,I 0,t), n51,2, . . . ,L, calculated in
this way will suffice to determinePD from Eq. ~12! as well
asPACC from Eqs.~13! and ~14! ~see below!.

IV. PROBABILITY IN THE ACCELERATOR MODE

The density of the probability distribution in the AM i
consequently written in the form
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216 55S. T. DEMBIŃSKI AND P. PEPŁOWSKI
PACC~ I ,t !5 (
n51

PACC
~n! ~ I n

~a! ,t !d~ I2I n
~a!!. ~13!

For t.0 the flow of probability from the DM starts to popu
late each component of thePACC(I ,t). It is not particularly
complicated to write down the formula forPACC

(n) (I n
(a) ,t). It

reads

PACC
~n! ~ I n

~a! ,t !5aKn
~acc!E

[ t2n]

t

PD~ I n
~a! ,I 0,t8!dt8

1 (
j51

n21

aKj
~acc!E

d~n, j !

u~n, j !
PD~ I j

~a! ,I 0,t8!dt8,

~14!

whered(n, j )5@ t2( i5 j
n i # andu(n, j )5@ t2( i5 j

n21i #. Square
brackets used in the limits of the integrals have the mean
@ l #5( l1u l u)/2.

For all values ofI n
(a) and at any instant of time the prob

ability from the DM is leaking to the AM. Once in the mod
the probability flows according to the dynamics characte
tic to the AM, i.e., it stays forn units of time on theI n

(a)

shell. The formula~14! properly takes care of both feature
The integration of thePACC(I ,t) over I gives the norm

E
0

`

PACC~ I ,t !dI5 (
n51

PACC
~n! ~ I n

~a! ,t !.

After the rearrangement of the double sums in the ab
equation, it can be written as

E
0

`

PACC~ I ,t !dI5a (
n51

Kn
~acc!E

0

t

PD~ I n
~a! ,I 0,t8!dt8. ~15!

From Eqs.~12! and ~15! it follows that

E
0

`

@PD~ I ,I 0,t !1PACC~ I ,t !#dI51,

i.e., the sum of probabilities in the DM and AM is proper
normalized for all instants of time.

V. COMPARISON WITH NUMERICAL SIMULATIONS

The simplest way to obtain numerically the time evoluti
of an ensemble of trajectories of the gravitational bounce
to solve equations of motion in the moving frame of refe
ence, i.e., to change the variablex→y5x2 l (t). Then
y.0 andẏ→2 ẏ for y50. Values ofx andv for all trajec-
tories from an ensemble were readily obtained for inte
instants of time and the time dependence of island areas
of densities of points in the phase space were calculated

In order to obtain the areaJn
(acc) of the accelerator island

in the phase space, a rectangular region was centered a
point (xn

(a) ,vn
(a)), i.e., the point that is calculated from Eq

~4! for tn5tn
(a) , p5n, and t51. From this region, a

5003500 grid of points then evolved in time. The number
points that, after (2n1k21)k/2 units of time, had
v'g(n1k)/2 gave the desired value ofJn

(acc) ~in units of the
adopted grid!. It was found that fork@1 the result did not
g

-

e

is
-

r
nd

the

f

depend onk and that accelerator islands had a compact form
In this way the dependence given in Fig. 2 was obtained.

Let us now examine formulas for the probability densitie
in the DM and AM. According to what was said above, w
choose the initial density in the phase space in such a w
that only points that belong to chaotic regions of the sam
energy shell are taken into account. In the first place it r
quires the localization and finding measures of the ellipti
accelerator, and deaccelerator regions of the considered
ergy shell. This means, in practice, finding arcs of the p
rabola E5v2/21gx, which belong to the EM, AM, and
DAM islands. The uniform density of points is then assume
on the remaining portions of the parabola and these are
points that start to evolve in time. Depending on the param
eters« andj, the phase-space density of these points is no
to be compared either withPD

0 from Eq.~11! or with PD and
PACC given in Eqs.~12! and ~13!.

The first choice of parameters is such that only the DM
exists. The best fit with the results of numerical simulation

FIG. 3. Comparison of the diffusion probability density
PD
0 (I ,I 0,t) from Eq. ~11!, with numerical results~histograms! for

t5100, 500, and 2000. The values of the parameters a
g51.0, j50.5, «52,0, I 0519.12, D050.0812.

FIG. 4. Histogram of the probability density for
g51.0, j50.75, «51.25, I 050.61, andt520. The accelerator
mode exists for these parameters.
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of the formula given in Eq. ~11! was obtained for
D050.0812 and the comparison for several instants of tim
is given in Fig. 3. The rough theoretical estimation ofD0,
which was presented above, gaveD050.0796 for the
adopted values of parameters. Since both values ofD0 differ
less than 2%, the agreement of the theory and numer
results is quite satisfactory.

Figures 4–9 present cases when the AM exists. Numer
simulations~Figs. 4, 6, and 8! are now compared with results
obtained from Eqs.~12! and ~13! ~Figs. 5, 7, and 9!. The
comparison is made fort520, 50, and 100. In comparison
with the previous case, the existence of elliptic and accele
tor islands modifies the value of the diffusion constantD0.
This time the best fit was obtained forD050.07. The param-
etera was also determined from the adjustment to the n
merical data and it turned out to bea51.0.

In order to better visualize the escape of probability fro
the DM, the densitiesPD ~solid lines! andPD

0 ~dotted lines!

FIG. 5. Diffusion probability densityPD(I ,I
0,t) from Eq. ~12!

~solid line!, diffusion probability densityPD
(0)(I ,I 0,t) from Eq.~11!

~dotted line!, and sumPD(I ,I
0,t)1PACC(I ,t), with PACC from Eq.

~13! being the density of the probability distribution in the AM
D050.07 anda51.0. The remaining parameters and the timet are
the same as in Fig. 4.

FIG. 6. Histogram of the probability density. The paramete
g, j, and« are the same as in Fig. 4;t550.
e

al

al

a-

-

are simultaneously presented in Figs. 5, 7, and 9. The A
islands have some width that grows with growingn ~see
Figs. 4, 6, and 8!. This effect cannot be described by th
model presented in this paper sinced-type densities of the
AM are assumed in Eq.~13!. Nevertheless, in order to make
qualitative comparisons of populations of the different AM
islands possible, an arbitrary constant widthDJ was as-
signed. The distributionPACC appears then as a sequence
‘‘chimneys,’’ each with a height proportional to
PACC
(n) (I n

(a) ,t); see Eq.~14!. The chimneys are added to th
PD distributions in Figs. 5, 7, and 9.

Contributions from the AM to histograms given in Figs
4, 6, and 8 can be numerically evaluated at least for su
values ofn where the diffusion component is negligible
This has been done for the histogram in Fig. 8. In Table I t
probabilities located in the AM islands in Fig. 8 are com
pared with probabilitiesPACC

(n) (I n
(a) ,t) for t5100 and

11<n<15. It follows from the theory that after 100 units o
time the sum of probabilities in all islands of the accelerat
mode is equal to 0.294.

The agreement of simulations and derived formulas is c
tainly not as good as that in Fig. 3. From a long list of mo
or less obvious causes of such a state of affairs let us men
only one. These AM islands, which are mostly to the righ

s

FIG. 7. Same as in Fig. 5, fort550.

FIG. 8. Histogram of the probability density. The paramete
g, j, and« are the same as in Fig. 4;t5100.
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were populated during initial instants of time, i.e., within t
time interval when not yet enough collisions had taken pl
and the description in terms of diffusion was questionabl

VI. SUMMARY AND CONCLUDING REMARKS

We studied conditions for the existence of the accelera
mode in the model of a gravitational bouncer, i.e., a po
that bounces elastically on an oscillating plate. A parabo
approximation, with parametrically (0,j,1) regulated
contributions of convex and concave parts, was used to
scribe the oscillations. It was well known that for the app
priate range of parameters in the phase space of this m
there were regions of resonance, periodic motions, that w
embedded in the sea of the chaotic motion. We have sh
that when the resonance islands existed andj.0.5, there
were also two regular types of motions: the accelerator
the deaccelerator modes. It was also known that accele
modes enhanced the diffusion in the chaotic part of the ph
space. Latent or quasiaccelerator modes, as well as s
accelerator modes, were introduced in a number of mod
On a sufficiently long time scale, these modes did not cha
the norm of the probability density in the diffusive mod
This is not the case in the model considered in this pa
Examining maps, which describe the time evolution of t
bouncer, it has been demonstrated that the probability
cated in the accelerator mode monotonically increased
time. In other words, the accelerator mode attracted~sucked
out! the probability from the diffusive mode with the resu

FIG. 9. Same as in Fig. 4, fort5100.
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that eventually only periodic and accelerated trajectories
mained. This is the different property of accelerator mod
The above-mentioned features were quantitatively describ
The exact solution of the Landau-type diffusion equation
the conditional probability density of the actionI , in which
the diffusion coefficient depends linearly on I, was give
The sinklike term, responsible for the presence of the ac
erator mode, was then added to the diffusion equation.
solution of the full equation for the diffusive probability den
sity was obtained via the transformation of the different
equation into a set of coupled Volterra-type integral eq
tions. The latter was solved numerically. The density of
probability in the accelerator mode was found in such a w
that the norm of the sum of both probabilities was time
dependent. Fairly good agreement of analytical and num
cal results with ‘‘computer experiments’’ was finally demo
strated.

When oscillations of the reflecting plate are described
another periodic function of time the attracting modes w
similar properties also exist in gravitational bouncers.
quantized version of the problems discussed in this pa
including in particular the effect of tunneling from the acce
erated mode, will be the subject of a subsequent paper.

Let us conclude with the following remark. It seems th
the properties of the accelerator mode, which we descri
above, are closer to Fermi’s expectations of acceleration
cosmic particles than those features that follow from
model that bears his name in which there is an upper bo
for the increase of energy.
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TABLE I. Probabilities located in islands of the accelerat
mode att5100. The values of the parameters are the same a
Fig. 4. PACC

(n) probabilities calculated from Eq.~14!; PACC(n) , prob-
abilities evaluated from the histogram in Fig. 8.

n PACC
(n) P ACC

(n)

11 0.020 0.020
12 0.027 0.028
13 0.039 0.041
14 0.057 0.062
15 0.041 0.033
,
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